Ослабление оптического излучения в атмосфере




Скачать 393.24 Kb.
НазваниеОслабление оптического излучения в атмосфере
страница1/4
Дата публикации08.04.2013
Размер393.24 Kb.
ТипДокументы
vbibl.ru > Математика > Документы
  1   2   3   4







  1. Ослабление оптического излучения в атмосфере


Наличие атмосферы между наблюдаемым объектом и ОЭС обычно является причиной основных помех. Энергия излучения от объекта ослабляется при прохождении сквозь атмосферу, трансформируется её спектральный состав Кроме того, градиенты температуры в атмосфере вызывает турбулентность, связанную с неоднородностью показателя преломления воздуха, что обуславливает флуктуации амплитуды, фазы и угла падения излучения на входной зрачок прибора и, как следствие, ухудшение качества сигнала изображения.

Ослабление излучения зависит от следующих явлений:

  • молекулярного поглощения газами, входящими в состав атмосферы,

  • ослабления за счет поглощения и рассеяния излучения атмосферным аэрозолем – твердыми и жидкими частицами вещества, взвешенными в воздухе и образующими дымки, туманы, дым и облака.

  • молекулярного рассеяния,

  • ослабления за счет флуктуаций на входном зрачке.




  1. Молекулярное поглощение излучения


Уже продолжительное время – по крайней мере с 50-х годов молекулярное поглощение (МП) в атмосфере является предметом теоретических и экспериментальных исследований, и составляет важнейшую часть относительно молодого направления в науке – прикладной атмосферной оптики. Подобный интерес определен не только проблематикой создания и эксплуатации ОЭС, но и многими другими геофизическими задачами, включая экологию, прогноз погоды и климатических изменений.

Методы и исследования МП –

  • лабораторные и натурные исследования функций спектрального молекулярного пропускания, спектроскопических характеристик оптически активных газов, разработка теоретических и эмпирических методик расчета, статистически обеспеченных как и в задаче о свойствах фонов:

  • получение статистических данных о вариациях концентрации поглощающих газов и ряда определяющих параметров (температура, давление).

Картины структуры спектра молекулярного поглощения излучения в УФ, видимом ИК диапазоне волн иллюстрируют рис.20,21. На рисунках приведено положение основных полос поглощения основных атмосферных газов.

Рис. 20 Общая картина спектра поглощения оптического излучения атмосферными газами с обозначением центров полос

(представлена по измерениям солнечного излучения)

Рис. 21. Экспериментальный спектр прозрачности /7/ слоя атмосферы

0,3 км над уровнем моря (толщина осажденного слоя воды

температура воздуха +26С

Продолжение рис.21

(фрагменты г,д,е)

продолжение рис.21

(фрагменты ж,з,и)


  1. Методы расчета МП.


В настоящее время в практике используют три метода расчета молекулярного поглощения или как удобнее – молекулярного пропускания 
(6 )

/Здесь ^ I0 – амплитуда сигнала на уровне источника излучения,

IL – амплитуда сигнала на входном зрачке ОЭC, удаленном на расстояние L от источника/:

  • теоретический /”линия за линией”/, когда интегрируется функция () с учетом каждой из сотен линий поглощения в пределах интервала ;

  • полуэмпирический;

  • эмпирический.

Теоретический метод в последние годы все шире используется в зарубежной практике и предполагает знание положения каждой линии поглощения каждого из атмосферных газов, а также форму и интенсивность этих линий.

Расчёты  осуществляются с разрешением по спектру длин волн для интервалов=20 см-1 относительно мощными ЭВМ, в памяти которых содержится база спектроскопической информации. Процесс расчета в зарубежной литературе – этот метод определен как “расчет линия за линией” и оформлен в виде стандартных программных средств типа “Hitran”, которые постоянно уточняются.

Полуэмпирический метод получил основное развитие также за рубежом.

Его суть связана с упрощением реальной структуры спектра поглощения, отражающим характерные особенности различных газов.

Например, из эксперимента известно, что такие газы как СО2, СО, НСl имеют ту особенность, что линии поглощения расположены по спектру упорядоченно. Это обстоятельство используется в модели Эльзассера, в которой реальная полоса поглощения заменяется совокупностью равноудаленных линий поглощения одинаковой интенсивности. Подобный подход позволяет свести расчет  к одной достаточно сложной формуле

, (7 )

где

d-среднее расстояние между линиями, I(x) – функция Бесселя,  - полуширина спектральной линии, S-её интенсивность, - количество поглощающего вещества на трассе.

Известны дальнейшие упрощения расчетной формулы (7).

Основные недостатки модели – её сложность и погрешности.

Другой пример. Такой газ, как пары воды, характеризует нерегулярное распределение линий поглощения в измеренных спектрах. Это обстоятельство вызвало к жизни статистическую модель (модель Гуди), которая предполагает замену реальной полосы поглощения набором линий, расположенных случайным образом.

Дальнейшее развитие полуэмпирического метода расчета  характеризует модель полосы поглощения в виде случайно расположенных в её спектре полос Эльзассера.

В этой модели

, (8)

где N – число наложенных друг на друга полос Эльзассера.

Для j –полосы полуширина линии, i - расстояние между линиями, di - интенсивность Si.

Модель (8) нашла применение при описании оптических трасс большой протяженности при наличии слабых линий поглощения (т.е. когда ).

И, наконец, агрегатный метод – где используется совокупность вышеперечисленных методов и достигается – наиболее близкое к реальному описание функций  для основных абсорбентов атмосферы – паров воды и углекислого газа.

Как видно, полуэмпирические методы и их комбинации используют стилизации, следующие из качественной оценки спектров эксп., экспериментальные данные и теоретические модельные расчеты о спектроскопических параметров линий. При этом достигается удовлетворительное совпадение с экспериментом в отдельных участках функций расч(), (где - поглощающая масса газа) и расхождении расчетных и экспериментальных значений  в других.

Эмпирический метод, который нашел свое развитие в таких зарубежных разработках как “Lowtran”, “Modtran” и активно развивается в отечественных разработках, наиболее удобен в инженерной практике. Исследования показали, что функция , по крайней мере в пределах =0,05…0,95 может быть аппроксимирована соотношением вида

(9 )

где - коэффициент, определяющий интенсивность поглощения в области i /определяется из эксперимента/, m и n - эмпирические параметры, - количество поглощающего газа на трассе, p – давление, равное сумме давлений (поглощающегося и т.н. уширяющегося газа). Соотношение (9) отвечает однородной горизонтальной трассе визирования. В общем случае
(10)
где эфф- эффективная поглощающая масса газа, определяемая интегрированием по оптической трассе ^ L с учетом реальной стратификации поглотителя в атмосфере.

Известен также графический метод расчета , который базируется на использовании соотношения (10). Действительно, можно показать, что (10) соответствует:

( 11)

В основной системе координат на лучах, исходящих из её центра, нанесён спектр:

, (12 )

который используется для поиска луча в системе координат, представляющей график зависимости . Принцип её построения для отдельной области спектра показан на рис.21а.

Рис.21а. Номограмма для расчета в области

полосы поглощения паров Н2О 1,37 мкм
Пример расчета спектрального молекулярного пропускания.
Оптически активные газы атмосферы подразделяются на компоненты, концентрация которых в воздухе практически постоянна - это СО2, СО, NH3, O2, CH4, N2O, O3) и пары Н2О, содержание которых определяется абсолютной влажностью воздуха в данный момент времени. Концентрация С0 отмеченных газов в атмосфере Земли имеет значения для

СО23,410-2 %,

СО(1-20)10-5 %,

CH41,410-2%,

N2O(2,5-6)10-3 %,

O2,=20,95%

Н2О(2-40)10-2 %.

Поглощающую массу газа с постоянной концентрацией будем определять в соответствии с (9). Тогда для горизонтальной трассы L(км), расположенной на высоте h(км)

, [cм] (13)

где qh – относительная эффективная концентрация, определяемая соотношением:

(14)

при условии, что функция давления в атмосфере определяется барометрической формулой:

(15)

Для паров воды в приземном слое воздуха

(16)

где е – парциальное давление паров воды,

Tтемпература в К.

Определение величины h для вертикальных оптических трасс требует интегрирования по высоте с учетом стратификации конкретного газа. Для наклонных трасс

, (17)

где в пределах (0-85) от вертикали =sec и определяется табулированной функцией Бемпорад в области 85…90.


  1. Аэрозольное ослабление оптического излучения


Как можно было видеть из вышеизложенного, спектральное молекулярное поглощение отличают два характерных обстоятельства:

  • невыполнимость для функции  закона Бугера*)

  • высокая спектральная селективность

Аэрозольное ослабление излучения связано с его поглощением и рассеянием на частицах, взвешенных в воздухе и характерно тем, что имеет незначительную селективность, а также подчиняется закону Бугера (т.е. коэффициент ослабления пропорционален количеству вещества на трассе или её протяженности). С учетом этого обстоятельства аэрозольное ослабление излучения в однородной среде (например, на приземной оптической трассе):

, (18)

причем

(19)

Способность частицы аэрозоля ослаблять излучение определяющим образом связана с комплексным показателем преломления вещества, из которого частица состоит, и размерам частицы.

Теория рассеяния оптического излучения наиболее полно развита Ми и носит его имя.

Согласно теории Ми

(20)

В (20) присутствует поперечное сечение частицы (r2), nr – количество рассеивающих частиц и K0 – эффективный коэффициент рассеяния, являющийся функцией относительного радиуса частицы



и показателя преломления m=n-i (см. рис.22). Невыполнение закона Бугера для распространения излучения в аэрозольной среде наблюдается только при превышении мощности излучения – порога, за которым начинается взрывообразное разрушение отдельных частиц аэрозоля. Аналогичным образом определяется и функция эффективного коэффициента поглощения Kр, которая имеет более простой вид без характерных для К0 сцинтиляций.

В литературе известны специальные расчеты по теории Ми функций рассеяния и поглощения для частиц с различными m,. Как правило это объемистые издания. Большинство таблиц определяют сферические частицы с однородной структурой. Специальные разделы посвящены развитию теории Ми в интересах расчета рассеяния на несферических частицах, – например эллипсах, цилиндрах и т.д. Достаточно глубоко исследован теоретический вопрос рассеяния на многослойных частицах. Последний актуален для атмосферной оптики, поскольку доказано, что при относительной влажности воздуха f 40 % частицы аэрозоля увлажнены и в их “оптике” должно учитываться проявление свойств воды. В частности, доказано, что при толщине “водяной рубашки” частицы, составляющей 10% и более, её оптические свойства полностью определяются m воды (раствора).

На практике оказалось более удобным расчет осл осуществлять на основе эмпирических соотношений. Впервые аппроксимация  была предложена для видимой области спектра Ангстремом и определяется соотношением

, (21)

где n –эмпирический коэффициент.

Рис.22. Пример изменений эффективных коэффициентов ослабления ос),

рассеяния р) и поглощения п) для водяных сфер (=4 мкм),

Позднее специальными исследованиями было показано, что формула Ангстрема на основе незначительного усложнения может быть распространена на широкую область длин волн. В этой модифицированной трактовке

(22)

В (22) n0, n1, n2 – эмпирические параметры, одинаковые для конкретных состояний атмосферы т.н. типов оптической погоды,  - компонента, независящая от типа оптической погоды, имеющая выраженный селективный ход (см.рис.22а) (физически связана с поглощающими свойствами вещества аэрозоля – его водной оболочки, задается таблично), 0- коэффициент ослабления в области, в которой осуществлена нормировка функции.

В соответствии с общепринятой практикой – это видимая область спектра, в которой аэрозольное ослабление характеризуют метеорологической дальностью видимости SM, связанный с показателем ослабления излучения на длине волны =0,55 мкм . Согласно соотношения Кошмидера

, (23)

Коэффициент 3,912 в (23) определяется исходя из возможности человека при заданной контрастной чувствительности глаза различать на расстоянии SM=L раздельно два предмета. Таким образом, с учетом (9,18,24)

имеем: (24)

Аэрозольная и молекулярная компоненты действуют независимо, поэтому, следуя (9,18,24)

(25 )

В (25) не учтено Рэлеевское (молекулярное ) рассеяние излучения.


  1. Рэлеевское рассеяние излучения.


Аэрозольное рассеяние носит название рассеяния Ми. В УФ и видимой области спектра должно быть учтено также молекулярное рассеяние на флуктуациях плотности воздуха, описанное Рэлеем.

Из курса общей физики известно, что

, (26)

(n – показатель преломления воздуха; в, во – плотность влажного и сухого воздуха, N - число Лошмидта, P –деполяризация света).

Изменение 1/4 и определяет тот факт, что в области 1 мкм становится менее 0,001 и может не приниматься во внимание. (Для примера при =0,4 мкм =0,043 км-1).

Рис.22а

На рисунке 22а  - компонента, обусловленная поглощением излучения газами, 2 - аэрозольная компонента, зависящая от погодной ситуации,3 =exp(-L)- зависит только от SМ, спектральная зависимость 3 показана на рис. 22б

Рис.22б

  1. Атмосферная рефракция и турбулентность


Атмосферная рефракция и турбулентность – это те факторы, с которыми связано как ослабление потока излучения, фиксируемого ОЭС, так и ухудшение наблюдаемого изображения.

Атмосферная рефракция обусловлена градиентом показателя преломления в атмосфере, в особенности в её приземном слое, который связан с суточным ходом температуры воздуха.

Известно, что показатель преломления воздуха зависит от его плотности в (n-1=kв, где k – константа), а плотность обратно пропорциональна абсолютной температуре, с учетом этого можно показать, что

т.о.

Если мы имеем дело с ОЭС стационарного наведения на источник – объект, то легко убедиться на практике, что в первые же полчаса после восхода солнца направленный на входной зрачок ОЭС коллимированный поток от объекта-источника выйдет из поля зрения прибора. Это конкретное проявление рефракции.

Неоднородности прогрева атмосферного воздуха, связанные с облачностью, различием типа поверхности и растительности приводят к флуктуациям его плотности и соответственно показателя преломления благодаря чему имеет место атмосферная турбулентность.

Атмосферная турбулентность приводит к искривлению пучка лучей из-за стратификации слоев воздуха (результат – миражи и угловые ошибки в ОЭС). Быстрые флуктуации неоднородностей – причина флуктуаций наклона волнового фронта и перемещения точки изображения в плоскости изображения, расфокусировки, “пятнистости” изображения, нарушения пространственной когерентности.

Расчет влияния турбулентности на качество изображения базируется на теории дифракции в её применении к дифракции излучения на неоднородностях атмосферы и развит В.И.Татарским. При этом, в общем случае учета турбулентного воздействия на поток излучения можно показать, что влияние дифракции ощущается только в том случае, если поперечное сечение пучка , где -длина волны, L – расстояние.

Значение R для различных и L даны ниже

 мкм

L, м


0,5


10,0

10

100

1000

10000

2,3

7,1

22,4

70,7

10

31,6

100,0

316


Флуктуации луча за счет вариаций показателя преломления принято описывать с помощью структурной функции Fn(r), которая является корреляционной функцией, определяющей разности показателей преломления m(x+r)– m(x), где r характеризует радиус (масштаб) флуктуаций. В соответствии с теорией В.И. Татарского

(28)
для среды с масштабом флуктуаций

(-max, -min границы размеров флуктуаций).

Коэффициент Сn – структурная постоянная показателя преломления. Если Сn=0 имеет местооднородная среда, перемещение всех её точек происходит с одинаковой скоростью.

При Сn =810-9 м-1/3 –имеем слабую (=1,2 см, =10 м)

Сn =410-8 м-1/3 – среднюю и

Сn =510-7 м-1/3 – сильную турбулентность =0,3 см, =1 м

Сдвиг луча характеризуется дисперсией или среднеквадратическим отклонением

(29)
Флуктуации луча приводят к расплыванию пучка на 2r и угловой ошибке . Спектр частот флуктуации лежит в пределах 0,03 Гц…20 Гц.

В заключение иллюстрируем представленные выше сведения.

Рис.23 дает представление о пространственно-временных изменениях показателя  в пыледымовых облаках различного происхождения. В частности на рис.23(а) даны поперечные разрезы (L) облака маскирующей аэрозольной завесы (МЗ). На рис.23 (б) показан эффект изменения спектра размеров частиц при удалении от оси шлейфа МЗ.

На рис. 23 (в) приведены частотные спектры вариаций показателя  (см. рис.23(г)) в МЗ, создаваемых генераторами различных конструкций (1…6).

Рис. 24 иллюстрирует спектральный ход оптической плотности ряда известных дымообразующих составов, используемых для создания МЗ

(L3 –геометрическая ширина МЗ)/

Рис.23


Б

В

Г

сек


продолжение рис. 23

(фрагменты Б,В,Г)

Наконец таблица ниже иллюстрирует эмпирическую модель спектральных показателей аэрозольного ослабления , в которой указаны параметры для расчета и дана характеристика соответствующих метеорологических условий.

Таблица

Модель спектральных показателей аэрозольного ослабления




Морфологическое обозначение типа оптической погоды

Синоптическая ситуация

Температура воздуха С

Относительная влажность, %


SM,

Км


n0


n1


n2

1

2

3

4

5

6

7

8

Дымка


Дымка

Дымка

Дымка
Туманная дымка

Дымка

Дымка


Туманная дымка

Дымка
Ледяной туман

Антициклоны нетропических широт

Антициклоны субтропических широт


Квазистационарные антициклоны (гребни) внетропических широт

(-20)(+20)


(-12)(+25)

(-12)(+25)

(-12)(+25)
(-12)(+25)
(-12)(+25)


(-12)(+25)

(-12)(+25)
от –35

до -12

50-90


30-50

50-90

85-90

90-95

90-100

90-100

60-90


90-100

90-100
70-90

20-50


15-50

1—20

5-10

10-15

5-10

1-5

5-15


1-5

1-5
1-5

0,03


0,004

0,09

0,07
0,22

0,06

0,30


0,56

0,34
0,56

0,35


0,35

0,44

0,54
0,57

0,79

0,37


0,39

0,49
0,39

2


2

1,45

1,06
0,65

0,4

0,9


0,39

0,52
0,39


Рис.24

Рис.25.

На рис.25 представлена демонстрация возможности одностороннего преимущества при постановке М3, связанного с тем, что противнику не известна область спектра, где 0. Этот участок может быть использован для «скрытой» связи по аналогии с запасными частотами в радиосвязи. Представленный эффект достигается за счет оптимизированного подбора вещества частиц в М3, обладающих определенным комплексным показателем преломления n() и спектром размеров частиц N(r).

Ранее было отмечено, что такие газы ка СО2, СО, СН4 и ряд других представлены в атмосфере Земли практически в постоянной концентрации имеющей лишь незначительный (вековой) тренз. Вместе с тем в отдельных участках пространства в условиях, когда имеет место приземная инверсия температуры угарный газ СО может накапливаться и более существенно влиять на оптику атмосферы. Этот факт демонстрирует рис.26.

Рис.26
Типичная погодная ситуация накопления СО в приземной атмосфере – зима, инверсия температуры, наличие интенсивных источников угарного газа –автомобилей и отопительных систем. Причем из рис.26 следует, что увеличение концентрации СО коррелирует с аэрозольным помутнением воздуха, которое определяет величина метеорологической дальности видимости. Подчеркнем, однако, что приведенный пример имеет границы в пространстве и времени и мало заметен в глобальном распределении.

Наконец рис.27 позволяет сравнить (оценки специалистов США) модель, предлагаемую с учетом соотношения (22) (на рисунке – кривые ,  для возможных вариаций ). С принятой в США стилизованной моделью атмосферного аэрозоля (пунктир). Действительно модель аэрозоля, принятая в США входит в программу “Lowtran” и предлагает учитывать только такие состояния аэрозоля, как “сельский”, “городской”, “морской”, что не может быть адекватным отражением атмосферыс характерным для неё перемещением воздушных масс (Vср50 км/час)

Рис.27

  1   2   3   4

Добавить документ в свой блог или на сайт

Похожие:

Ослабление оптического излучения в атмосфере iconДлина волны уф излучения лежит в пределах от 100 до 400 нм (1 нм...
Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее, именно при изучении этой малой части спектра...

Ослабление оптического излучения в атмосфере iconСистемы и устройства содержание
Сравнение приборов (систем) оптического диапазона с радиоэлектронными устройствами

Ослабление оптического излучения в атмосфере iconИспользование ионизирующего излучения в производстве лекарственных средств
Примечание — Производитель продукции, для которой ионизирующее облучение является составной частью технологического процесса, должен...

Ослабление оптического излучения в атмосфере icon50-летие лазера отметило не только профессиональное научно-техническое...
...

Ослабление оптического излучения в атмосфере iconВолоконно-оптические линии связи
Характеристики оптического волокна как структурного элемента датчика и систем связи ст. 25

Ослабление оптического излучения в атмосфере iconМониторинг факторов угроз суверенитету и геополитическим интересам России 11 марта 2009 г
Конгресс Соединенных Штатов утвердил бюджетный законопроект, который предусматривает ослабление ограничений на торговлю и поездки...

Ослабление оптического излучения в атмосфере iconПравила подвески и монтажа самонесущего волоконно-оптического кабеля...
Правила разработаны Всероссийским научно-исследовательским институтом железнодорожного транспорта, зао компания

Ослабление оптического излучения в атмосфере iconВинтовочный оптический прицел за последние годы стал куда более усовершенствованным,...
Сетка оптического прибора, называемая прицельной маркой (сеткой), обеспечивает точность прицела

Ослабление оптического излучения в атмосфере icon1. 1 Состояние экономики СССР после окончания войны
В 1945 г. Победа породила в народе надежды на лучшую жизнь, ослабление пресса тоталитарного государства на личность, ликвидацию его...

Ослабление оптического излучения в атмосфере iconНередко весной наше состояние здоровья
Особенно тяжело они переносятся детьми. Ослабленный организм не может самостоятельно побороть вирусы, что нередко приводит к осложнениям....

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
vbibl.ru
Главная страница