Лабораторная работа Интерполяция и предсказание




Скачать 62.01 Kb.
НазваниеЛабораторная работа Интерполяция и предсказание
Дата публикации15.03.2013
Размер62.01 Kb.
ТипЛабораторная работа
vbibl.ru > Математика > Лабораторная работа

Лабораторная работа
Интерполяция и предсказание


 Аппроксимация функций заключается в приближенной замене заданной функции f(x) некоторой функцией j (x) так, чтобы отклонение функции j (x) от f(x) в заданной области было наименьшим. Функция j (х) при этом называется аппроксимирующей. Типичной задачей аппроксимации функций является задача интерполяции. Необходимость интерполяции функций в основном связана с двумя причинами:

  1. Функция f(x) имеет сложное аналитическое описание, вызывающее определенные трудности при его использовании (например, f(x) является спецфункцией: гамма-функцией, эллиптической функцией и др.).

  2. Аналитическое описание функции f(x) неизвестно, т.е. f(x) задана таблично. При этом необходимо иметь аналитическое описание приближенно представляющее f(x) (например, для вычисления: значений f(x) в произвольных точках, определения интегралов и производных от f(x) и т. п.)

Интерполяция

Простейшая задача интерполяции заключается в следующем. Для заданных n + 1 точек xi = х0, х1, . . ., хn, которые называются узлами интерполяции, и значений в этих точках некоторой функции f(xi) = y0, y1, . . ., yn построить полином j (х) (интерполяционный полином) степени n вида



(1)

принимающий в узлах интерполяции хi те же значения yi, что и функция f(xi):

i = 0, 1, ..., n.

(2)

Глобальная интерполяция

Простейшим видом глобальной интерполяции является параболическая интерполяция, когда, используя описанные выше условия (2), для отыскания неизвестных n + 1 коэффициентов а0, а1, . . ., аn выражения (1) получают систему из n + 1 уравнений:

.

(3)

^ Интерполяционная формула Лагранжа:



(4)

Для построения интерполяционной формулы Лагранжа в Mathcad удобно использовать функцию if

if(cond, tval, fval)

Возвращает значение tval, если cond отличен от 0 (истина). Возвращает значение fval, если cond равен 0 (ложь).

Часто интерполирование ведется для функций, заданных таблично с равноотстоящими значениями аргумента (hi = xi+1 - xi = const). Введем предварительно понятие конечных разностей:



С учетом введенных обозначений первая интерполяционная формула Ньютона имеет вид:



(5)

^ Вторая интерполяционная формула имеет вид:



(6)

Однако, интерполяция при большом числе узлов приводит к необходимости работать с многочленами высокой степени (например, 50-й или даже 100-й), что неприемлемо как с точки зрения вычислений, так и из-за склонности таких многочленов к осцилляции (колебаниям) между узлами сетки. Поэтому на практике часто используют интерполяцию кусочными многочленами (или локальную интерполяцию).

Локальная интерполяция

При локальной интерполяции между различными узлами выбираются различные многочлены невысокой степени. В среде Mathcad есть для этого инструментарий: средства линейной интерполяции (функция linterp) и интерполяции сплайном (функция interp) - линейным (lspline), параболическим (pspline) и кубическим (cspline). Рисунок 4 показывает некоторые примеры локальной интерполяции.

 



^ Рисунок 4. Локальная интерполяция

 

linterp(vx, vy, x)

Использует векторы данных vx и vy, чтобы возвратить линейно интерполируемое значение у, соответствующее третьему аргументу x.

lspline(vx, vy) pspline(vx, vy) cspline(vx, vy)

Все эти функции возвращают вектор коэффициентов вторых производных, который мы будем называть vs. Вектор vs, используется в функции interp:

interp(vs, vx, vy, x)

Возвращает интерполируемое значение у, соответствующее аргументу х.

Предсказание

Если необходимо оценить значения функции в точках не принадлежащих отрезку [x0, xn], используйте функцию predict (Рисунок 5).

 



^ Рисунок 5. Экстраполяция функций

 

predict(v, m, n)

Возвращает n предсказанных значений, основанных на m последовательных значениях вектора данных v.

 

Порядок выполнения лабораторной работы 3

 

Задание 1. Вычислить значения заданной функции уi = f(xi) в узлах интерполяции хi = a + h i, где h = (b - a)/10, i = 0, 1, ..., 10, на отрезке [a, b].

 

Варианты заданий

 



варианта

f(x)

[a, b]



варианта

f(x)

[a, b]

1



[0, 2]

9



[1, 5]

2



[0, 2]

10



[1, 5]

3



[0, 5]

11



[0, 3]

4

1/(0.5 + x2)

[0, 2]

12



[0, 2]

5

e -(x + sin x)

[2, 5]

13

cos(x + e cos x)

[3, 6]

6

1/(1 + e -x)

[0, 4]

14



[0, 1]

7

sin(x + e sin x)

[0, 3]

15

e cos x? cos x2

[0, 2]

8

e -(x + 1/x)

[1, 3]

 

 

 

Задание 2. По вычисленной таблице (xi, yi) провести параболическую интерполяцию.

Для нахождения коэффициентов искомого полинома (1) необходимо составить систему линейных алгебраических уравнений (3).

Систему уравнений решить матрично с использованием функции lsolve.

Построить график интерполяционного многочлена и отметить на нем узловые точки (xi, yi).

Задание 3. Для вычисленной табличной функции составить формулу интерполяционного многочлена Лагранжа, используя операторы суммирования и перемножения по дискретному аргументу, а также функцию if.

Построить график интерполяционного многочлена и отметить на нем узловые точки (xi, yi).

Задание 4. Провести интерполирование заданной функции с помощью 1ой и 2ой интерполяционных формул ^ Ньютона.

Построить графики интерполяционных многочленов и отметить на нем узловые точки (xi, yi).

Задание 5. Провести линейную интерполяцию заданной функции с помощью встроенной интерполяционной функции linterp.

Построить график функции linterp и отметить на нем узловые точки (xi, yi).

Задание 6. Провести сплайн-интерполяцию с помощью функций lspline, pspline, сspline и interp.

Построить график функции interp и отметить на нем узловые точки (xi, yi).

Задание 7. Вычислить значения заданной функции уi = f(xi) в точках хi = a + i/10, где, i = 0, 1, ..., 10(b - a), на отрезке [a, b].

С использованием функции predict выполнить предсказание (экстраполяцию) полученного вектора данных yi в последующих 10 точках по последним 7 значениям функции.

Отобразить графически имеющиеся данные, предсказанные данные и истинный вид функции f(x).

 

Добавить документ в свой блог или на сайт

Похожие:

Лабораторная работа Интерполяция и предсказание iconЛабораторная работа №1,2
Лабораторная работа №2. Организация переписка с помощью электронной почты (E-mail). 22

Лабораторная работа Интерполяция и предсказание iconЛабораторная работа №2. 13 Работа с базами данных lotus notes 13...
Проблемы возникают при выборе средств автоматизации документооборота, поскольку в настоящее время существует большое количество программных...

Лабораторная работа Интерполяция и предсказание iconЛабораторная работа №1 по дисциплине «организация ЭВМ и систем»
Работа выполняется с целью изучения структуры микропроцессора (МП) кр580ВМ80А и практического овладения аппаратно программными средствами...

Лабораторная работа Интерполяция и предсказание iconЛабораторная работа №2 Тема: Нормализация данных

Лабораторная работа Интерполяция и предсказание iconЛабораторная работа №2 Работа в Project Expert. Создание нового проекта...
Существует замысел создать небольшое транспортное предприятие, которое должно заниматься грузовыми перевозками

Лабораторная работа Интерполяция и предсказание iconЛабораторная работа №2 по дисциплине «организация ЭВМ и систем»
Работа выполняется с целью изучения структуры однокристальной микроэвм (омэвм) mcs 48 (К1816ВЕ48) и практического овладения имитационной...

Лабораторная работа Интерполяция и предсказание iconЛабораторная работа по эконометрике
Государственное образовательное учреждение высшего профессионального образования

Лабораторная работа Интерполяция и предсказание iconЛабораторная работа по эконометрик е
Государственное образовательное учреждение высшего профессионального образования

Лабораторная работа Интерполяция и предсказание iconЛабораторная работа №5
Программирование циклических вычислительных процессов с использованием массивов и матриц

Лабораторная работа Интерполяция и предсказание iconУрок биологии в 7 классе Тема: структурно-функциональные особенности...
...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
vbibl.ru
Главная страница