Основные этапы применения математических методов в финансово-экономических расчетах (иллюстрация на конкретном примере)




Скачать 267.28 Kb.
НазваниеОсновные этапы применения математических методов в финансово-экономических расчетах (иллюстрация на конкретном примере)
страница1/5
Дата публикации01.06.2013
Размер267.28 Kb.
ТипДокументы
vbibl.ru > Экономика > Документы
  1   2   3   4   5

  1. Экономико-математическая модель (ЭММ). Понятие, пример, общая классификация ЭММ.

В основе всех совр.фин.расчетов лежат те или иные мат.модели исследуемых эк.процессов, т.е. основным методом является метод моделирования. Этот метод основан на принципе аналогии, т.е. возможности изучения не самого исходного объекта, а некоторого искусственного созданного объекта – модели. Модель вообще это некоторый объект способный заменить исследуемый с целью получения нового знания. Модели подразделяются на физические и абстрактные. Физические это макеты, конструкции и т.д. Абстрактные это словесно-описательные и мат.модели. Словесно-описательные это эк.сценарии, программы, пояснительные записки. ЭММ это мат.образ, мат.описание принципиальных сторон исследуемого эк.процесса, проблемы, задачи. ЭММ средствами экономики и мат-ки отражает существо исследуемой эк.проблемы. ЭММетоды это методы разработки, исследования и принятия решений по ЭММ. ЭММ подразделяют на макро- и микроэкономические, прескриптивные и дескриптивные. К макро относят модели, реализующие народно-хозяйственные пропорции, межотраслевые и межрегиональные пропорции и эк.взаимоотношения. К микро - модели на уровне взаимоотношений хозяйствующего субъекта, модели внутри фирменного планирования. Прескриптивные (нормативные) это модели отвечают на вопрос: Какой вариант управленческого поведения лучше? (оптимизационные модели). Дескриптивные это модели отвечают на вопрос: А что будет, если? (балансовые модели, производственные функции). Многим задачам в экономике отвечают оптимизационные (экстремальные) ЭММ.


  1. ^ Графический метод решения задачи линейного программирования.

Если в задаче линейного программирования ограничения заданы в виде неравенств с двумя переменными, то задача может быть решена графически. Графический метод решения ЗЛП состоит из этапов: 1.Стоится многоугольная область допустимых решений ЗЛП. 2.Строится вектор-градиент целевой функции. Начало в т.О(0,0), а вершина в т.(df/dx1; df/dx2)=(C1;C2). 3.Строим линию уровня c1x1+c2x2=a, a=const. Линия уровня это прямая перпендикулярная вектору-градиенту. Передвигаемся в направлении этого вектора. В случае максимизации ЦФ до тех пор, пока не покинет ОДР. Предельная точка ОДР при этом движении и является точкой max ЦФ. 4.Для нахождения координат указанной предельной точки, достаточно решить 2 уравнения прямых, получаемых из соответствующих ограничений и дающих в пересечении точку max. Значение ЦФ найденное в этой точке является max. При минимизации ЦФ линия уровня перемещается в направлении противоположном вектору-градиенту.


  1. ^ Основные этапы применения математических методов в финансово-экономических расчетах (иллюстрация на конкретном примере).

В процессе решения эк.задач с применением мат.методов можно выделить 4 осн.этапа: 1.Постановка эк.задачи, проблемы. Здесь осуществляется описание экономико-организационной задачи. 2.Мат.моделирование. Здесь разрабатывается ЭММ задачи. 3.Получение решения по модели. Здесь осуществляется реализация ЭММ. 4.Внедрение полученного решения. Разработка рекомендаций, предложений в доступном и наглядном виде для работника. В процессе исследований и принятия решений с помощью ЭММ приходится возвращаться заново на те или иные этапы.


  1. ^ Общая задача линейного программирования, основные элементы и понятия.

Реализовать на практике принцип оптимальности это значит разработать и получить решение по модели: max(min) максимизировать или минимизировать функцию f(x) при ограничениях, где f(x1,x2,…,xn) – математическая запись критерия оптимальности -ЦФ. Max(min) f(x)=f(x1,x2,…,xn),x є D.

Обычно, приведенную модель записывают в виде:

Max(min) f(x1,x2,…,xn)

g1(x1,x2,…xn) {≤ , = , ≥ } b1 (1)

g2(x1,x2,…xn) {≤ , = , ≥ } b2 (2)

gn(x1,x2,…xn) {≤ , = , ≥ } bn

xi ≥ 0, i=1,¯ n (3)


  1. Теоремы двойственности и их использование для анализа оптимальных решений.

Теорема 1 (основная теорема двойственности)

1 часть: Если одна из двойственных задач разрешима, то разрешима и другая. Причем экстремальное значение ЦФ задач равны max f(x)=f(x*)=min Ψ(y)= Ψ (y*). 2 часть: Если одна из двойственных задач неразрешима, то неразрешима и другая.

Теорема 2 (о дополняющей не жесткости): Если при подстановке компонент оптимального плана в систему ограничений исходной задачи i-тое ограничение обращается в неравенство, то i-тая компонента оптимального плана двойственной задачи равна 0. Если i-тая компонента оптимального плана двойственной задачи положительна, то i-тое ограничение исходной задачи удовлетворяется ее оптимальным решением как строгое неравенство. Xi* (∑AijYi*- Ci) = 0 Yi* (∑AijXj*- Bi) = 0


  1. Построение М-задачи .

Симплекс-метод с искусственным базисом применяется в тех случаях, когда затруднительно найти первоначальный план опорный план КЗЛП. Этот метод заключается в применении правил симплекс-метода к М-задаче. Она получается из исходной добавлением к левой части векторного уравнения таких искусственных единичных векторов с соответствующими неотрицательными искусственными переменными, чтобы вновь полученная матрица содержала систему единичных, линейно-независимых векторов. В линейную форму исходной задачи добавляется в случае ее максимизации слагаемое, представляющее собой произведение числа (-М) на сумму искусственных переменных, где М –достаточно большое число. В полученной задаче первоначальный опорный план очевиден. При применении к этой задаче симплекс-метода оценки ∆j теперь будет зависеть от буквы М. Для сравнения оценок нужно помнить, что М- достаточно большое число. В процессе решения М-задачи следует вычеркивать в симплекс-таблице искусственные векторы по мере их выхода из базиса. Если все искусственные векторы вышли из базиса, то получаем исходную задачу. Если в оптимальном решении М-задачи хотя бы одна из искусственных переменных отлична от нуля, то система ограничений исходной задачи несовместна (задача неразрешима). В случае неразрешимости М-задачи будет неразрешима и исходная задача.


  1. ^ Свойства двойственных оценок и их использование для анализа оптимальных решений.

1.Величина двойственной оценки того или иного ресурса показывает насколько возросло бы максимальное значение ЦФ, если бы объем данного ресурса увеличился на одну единицу. (двойственные оценки измеряют эффективность малых приращений объемов ресурсов в конкретных условиях данной задачи). Это свойство позволяет выявить основные направления расшивки узких мест в производственной деятельности. 2.Двойственные оценки отражают сравнительную дефицитность различных видов ресурсов в отношении принятого в задаче показателя эффективности. Оценки показывают, какие ресурсы являются более дефицитными (они будут иметь самые высокие оценки), какие менее дефицитны и какие совсем не дефицитны. 3.Двойственные оценки позволяют определять нормы заменяемости ресурсов (предполагается неабсолютная заменяемость, а относительная, т.е. заменяемость с точки зрения критерия оптимальности). 4.Двойственные оценки служат инструментом определения эффективности отдельных хозяйственных решений. С их помощью можно определять выгодность производства новых изделий, эффективность новых технологических способов. ЕСЛИ ∆j = ∑ AijYi*- Cj ≤ 0 то выгодно, ЕСЛИ j > 0 то невыгодно.


  1. Особые случаи решения ЗЛП графическим методом.

#1 max (3x1+5x2) ограничения: x1+x2 ≥ 2 4x1+2x2 ≤ 2 при x1,2 ≥ 0

Задача неразрешима, вследствии противоречивости ограничений

#2 max (3x1+2x2) x1-x2 ≤ 1 2x1+x2 ≥ 1 при x1,2 ≥ 0

Задача неразрешима вследствие неограниченности ЦФ на ОДР.

#3 Случай не единственности решения max (8x1+10x2) 5x1+x2 ≤ 15 4x1+5x2 ≤ 40 при x2 ≥ 3 x1 ≥ 0

Линия уровня 8x1+10x2 =a параллельна одной из линий по границе ОДР. Это значит, что задача имеет бесконечное множество оптимальных решений (его задают координаты точек отрезка ВС).


  1. ^ Основные свойства задачи линейного программирования.

В основе математического метода получения оптимального решения лежат основные свойства ЗЛП: 1.Не существует локального экстремума отличного от глобального. Если экстремум есть, то он единственный. 2.Множество всех планов ЗЛП является выпуклой многогранной областью (многогранником решения). 3.ЦФ в ЗЛП достигает своего max (min) значения в угловой точке многогранника решения (в вершине). Если ЦФ принимает max решение более чем в одной угловой точке, то она достигает того же значения в любой точке, являющейся выпуклой линейной комбинацией этих точек. 4.Каждой угловой точке отвечает опорный план ЗЛП (не отрицательное базисное решение соответствующей КЗЛП)


  1. Методы выявления тенденций во временных рядах.

Для определения наличия тренда во временном ряду применяется несколько методов.

1.Метод проверки разностей средних уровней. Состоит из 4х этапов:

I: Вр. Ряд разбивается на две примерно равные по числу уровней части (n1+n2=n).

II: Для каждой из этих частей вычисляются средние значения и дисперсии.





III: Проверка равенства (однородности) дисперсий обеих частей ряда с помощью F-критерия Фишера.



Если расчетное значение F меньше табличного Fα, то гипотеза о равенстве дисперсий принимается и переходят к 4му этапу.

IV: Проверяется гипотеза об отсутствии тренда с использованием t-критерия Стьюдента. Для этого определяется рассчетное значение критерия Стьюдента по формуле:



, где - среднеквадратичексое отклонение разности средних:



Если расчетное значение t меньше табличного значение статистики Стьюдента tα, тренда нет. Если больше – тренд есть.

2.Метод Фостера-Стьюарта.


  1. Двойственные оценки в ЗЛП, интервалы устойчивости двойственных оценок, определение средствами Excel.

С каждой задачей линейного программирования тесно связана другая линейная задача , называемая двойственной; первоначальная задача называется исходной или прямой.

Связь исходной и двойственной задачи заключается, в частности, в том, что решение одной из них может быть получено непосредственно из решения другой. Переменные двойственной задачи называются двойственными оценками.

Модель двойственной задачи имеет вид:

g()=





Теорема об оценках: значения переменных в оптимальном решении двойственной задачи представляют собой оценки влияния свободных членов b системы ограничений – неравенств прямой задачи на величину



Экономико- математический анализ оптимальных решений базируется на свойсвах двойственных оценок (для определения этих границ существует математические соотношения, которые реализованы в «Отчете по устойчивости» Excel. (теневые цены, интервалы устойчивости, допустимое увеличение, допустимое уменьшение)

Интервалы изменения объемов ресурсов ( компонент вектора В) в пределах которых двойственные оценки сохраняют свои значения принято называть интервалами устойчивости двойственных оценок.

Если двойственные оценки попадают в интервал устойчивости, то экономическое поведение не меняется Если выходят за пределы интервалов устойчивости ,то новое экономическое поведение получим в новом решении задачи.

1. те ограничения которые выполнялись как равенства , так и будут выполняться как равенства

2.структура плана останется неизменной

Совмещая 1 и 2 формируем новое поведение объемов ресурсов.

Двойственные оценки связаны с

оптимальным планом простой задачи .Всякое изменение исходных данных прямой задачи может оказать влияние как на ее оптимальный план () так и на систему оптимальных двойственных оценок. Поэтому чтобы проводить экономический анализ с использованием двойственных оценок,нужно знать их интервал устойчивости


  1. ^ Методы механического сглаживания временных рядов.

Суть методов механического сглаживания заключается в следующем: берется несколько первых уровней временного ряда, образующих интервал сглаживания. Для них подбирается полином, степень которго должна быть меньше числа уровней, входящих в интервал сглаживания; с помощью полинома определяются новые, выравненные значения уровней в середине интервала сглаживания. Далее интервал сглаживания сдвигается на один уровень ряда вправо, вычисляется следующее сглаженно значение, и т.д.

Самым простым является метод простой скользящей средней.

Метод взвешенной скользящей средней

Метод экспоненциального сглаживания.


  1. ^ Принцип оптимальности в планировании и управлении, его математическая запись.

Суть принципа оптимальности состоит в стремлении выбрать такое управленческое решение, которое наилучшим образом учитывало бы внутренние возможности и внешние условия производственной деятельности хозяйствующего субъекта. Слова «наилучшим образом» в принципе оптимальности на практике означают – выбор некоторого экономического показателя, позволяющего сравнивать, оценивать эффективность управленческих решений Х, т.е. выбрать критерий оптимальности. Критерии оптимальности: минимум себестоимости продукции, максимум прибыли от реализации, максимум рентабельности и др. Слова «учитывало бы внутренние возможности и внешние условия» на практике означают, что на выбор управленческого решения Х накладывается ряд ограничений, т.е. выбор Х осуществляется из некоторой области допустимых решений D. Реализовать на практике принцип оптимальности это значит разработать и получить решение по модели: максимизировать или минимизировать

функцию f(x) при ограничениях, где f(x1,x2,…,xn) – математическая запись критерия оптимальности –ЦФ оптимизационной модели.

Max(min) f(x1,x2,…,xn)

g1(x1,x2,…xn) {≤ , = , ≥ } b1

g2(x1,x2,…xn) {≤ , = , ≥ } b2

gn(x1,x2,…xn) {≤ , = , ≥ } bn

xi ≥ 0, i=1,¯ n


  1. Оценка адекватности модели кривой роста.

Трендовая модель считается адекватной, если правильно отражает систематические компоненты временного ряда. Это требование эквиваленто требованию, чтобы остаточная компонента удовлетворяла свойствам случайной компоненты временного ряда.

1. Проверка случайности колебаний уровней остаточной последовательности можно проводить с помощью критерия пиков. Общее число поворотных точек для остаточной последовательности обозначим через p. В случайно выборке:

- математическое ожидание числа точек поворота

- дисперсия.

Критерием случайности с 5%-ным уровнем значимости является выполнение неравенства:



Если это неравенство не выполняется, трендовая модель считается неадекватной.

2. Проверка соответствия распределения случайной компоненты нормальному закону распределения.

О
дин из методов основан на RS-критерии. Этот критерий численно равен отношению размаха вариации случайной величины R к стандартному отклонению S.
Рассчетное значение RS-критерия сравнивается с табличными (критическими) нижней и верхней границами данного отношения, и если это отношение не попадает в интервал между критическими границами, то гипотеза о нормальности распределения отвергается. В противном случае принимается.

Для уровня значимости 0,05: n=10 (2,67;3,685). n=20 (3,18;4,49). n=30 (3,47;4,89).

3. Проверка равенства математического ожидания случайной компоненты нулю. Осуществляется на основе t-критерия Стьюдента. Расчетное значение задается формулой

, где - ср. арифм. значение уровней ряда; - стандартное (среднеквадратическое) отклонение для этой последовательности. Если рассчетное значение t меньше табличного значения tα статистики Стьюдента с заданным уровнем значимости α и числом степеней свободы n-1, то гипотеза о равенстве нулю математического ожидания принимается. Если наоборот – отвергается модель считается неадекватной.

4. Проверка независимости значений уровней случайной компоненты.

Проверка отсутствия существенной автокорреляции в остаточной компоненте по критерию Дарбина-Уотсона. Рассчет ное значение этого критерия определяется по формуле





Вывод об адекватности трендовой модели делается, если все указанные выше 4 проверки свойств дают положительный результат.

  1. ^ Постановка и экономико-математическая модель закрытой транспортной задачи.

Имеется m пунктов производства однородного продукта с объемами производства A1,A2,…,Am. Имеется n пунктов потребления этого продукта с объемами потребления b1,b2,…,bn. Известны оценки С= (Cij) M*N транспортных затрат на перевозку единицы груза от i-того поставщика к j-тому потребителю (по коммуникации от i к j). Надо так прикрепить потребителей к поставщикам, чтобы минимизировать суммарные транспортные затраты на перевозку груза. ЭММ ТЗ: Обозначим через Xij, i=1,m j=1,n объемы перевозок по коммуникации ij, т.е. в рассмотрение вводится матрица X=(Xij)m*n.

  1   2   3   4   5

Добавить документ в свой блог или на сайт

Похожие:

Основные этапы применения математических методов в финансово-экономических расчетах (иллюстрация на конкретном примере) iconШестой Применение количественных методов в управленческом учете
Последние разработки в этой области привели к пониманию важности применения математических и статистических приемов для оценивания...

Основные этапы применения математических методов в финансово-экономических расчетах (иллюстрация на конкретном примере) iconТемы выпускных квалификационных работ
Формирование рекламной стратегии фирмы на конкурентном рынке (на конкретном примере)

Основные этапы применения математических методов в финансово-экономических расчетах (иллюстрация на конкретном примере) iconНаучная работа по информатике на тему: «Применение электронных таблиц в экономических расчётах»
Электронные таблицы используются во всех сферах человеческой деятельности, но особо широко используются для проведения экономических...

Основные этапы применения математических методов в финансово-экономических расчетах (иллюстрация на конкретном примере) iconСтатистических технологий, методов статистических испытаний (Монте-Карло)...
Практика применения эконометрических методов часто выходит за границы классической математико-статистической теории. В качестве примера...

Основные этапы применения математических методов в финансово-экономических расчетах (иллюстрация на конкретном примере) iconТесты. Представители классических теорий управления: А. Файоль
Теоретический вопрос. Стили управления на уровне организации (на конкретном примере)

Основные этапы применения математических методов в финансово-экономических расчетах (иллюстрация на конкретном примере) iconЗа отчетный год
Рассмотрим порядок анализа денежных потоков коммерческой организации по данным отчета о движении ее денежных средств на конкретном...

Основные этапы применения математических методов в финансово-экономических расчетах (иллюстрация на конкретном примере) iconУрок №7 Тема: Основные устройства компьютера
Цель урока – ввести понятие аппаратного обеспечения компьютера, разобрать основные этапы обработки информации, назначение и основные...

Основные этапы применения математических методов в финансово-экономических расчетах (иллюстрация на конкретном примере) iconПримерная тематика выпускных квалификационных работ по специальности...
Создание и управление системой сбора информации и исследований на предприятии, в организации (на конкретном примере)

Основные этапы применения математических методов в финансово-экономических расчетах (иллюстрация на конкретном примере) iconСтатья Основные понятия, используемые в настоящем Федеральном законе
Настоящий Федеральный закон устанавливает меры по защите экономических интересов Российской Федерации при осуществлении внешней торговли...

Основные этапы применения математических методов в финансово-экономических расчетах (иллюстрация на конкретном примере) iconРазвитие рыночных отношений повышает ответственность и самостоятельность...
Поскольку основные средства обеспечивают материально техническую базу, влияют на эффективность производства и результаты финансово-хозяйственной...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
vbibl.ru
Главная страница